首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73800篇
  免费   7618篇
  国内免费   4281篇
电工技术   1864篇
综合类   4803篇
化学工业   16724篇
金属工艺   7371篇
机械仪表   6571篇
建筑科学   3316篇
矿业工程   1971篇
能源动力   2533篇
轻工业   8970篇
水利工程   1541篇
石油天然气   2504篇
武器工业   585篇
无线电   7409篇
一般工业技术   11995篇
冶金工业   2137篇
原子能技术   1108篇
自动化技术   4297篇
  2024年   215篇
  2023年   1477篇
  2022年   1899篇
  2021年   2568篇
  2020年   2704篇
  2019年   2573篇
  2018年   2489篇
  2017年   2921篇
  2016年   2953篇
  2015年   2986篇
  2014年   4047篇
  2013年   5233篇
  2012年   5310篇
  2011年   5937篇
  2010年   4055篇
  2009年   4177篇
  2008年   3879篇
  2007年   4474篇
  2006年   4132篇
  2005年   3306篇
  2004年   2841篇
  2003年   2450篇
  2002年   2209篇
  2001年   1698篇
  2000年   1424篇
  1999年   1183篇
  1998年   977篇
  1997年   876篇
  1996年   853篇
  1995年   661篇
  1994年   627篇
  1993年   493篇
  1992年   437篇
  1991年   302篇
  1990年   295篇
  1989年   200篇
  1988年   180篇
  1987年   99篇
  1986年   104篇
  1985年   106篇
  1984年   94篇
  1983年   64篇
  1982年   71篇
  1981年   22篇
  1980年   30篇
  1979年   18篇
  1976年   9篇
  1975年   7篇
  1959年   7篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Undesired photoelectronic dormancy through active species decay is adverse to photoactivity enhancement. An insufficient extrinsic driving force leads to ultrafast deep charge trapping and photoactive species depopulation in carbon nitride (g-C3N4). Excitation of shallow trapping in g-C3N4 with long-lived excited states opens up the possibility of pursuing high-efficiency photocatalysis. Herein, a near-field-assisted model is constructed consisting of an In2O3-cube/g-C3N4 heterojunction associated with ultrafast photodynamic coupling. This In2O3-cube-induced near-field assistance system provides catalytic “hot areas”, efficiently enhances the lifetimes of excited states and shallow trapping in g-C3N4 and this favors an increased active species density. Optical simulations combined with time-resolved transient absorption spectroscopy shows there is a built-in charge transfer and the active species lifetimes are longer in the In2O3-cube/g-C3N4 hybrid. Besides these properties, the estimated overpotential and interfacial kinetics of the In2O3-cube/g-C3N4 hybrid co-promotes the liquid phase reaction and also helps in boosting the photocatalytic performance. The photocatalytic results exhibit a tremendous improvement (34-fold) for visible-light-driven hydrogen production. Near-field-assisted long-lived active species and the influences of trap states is a novel finding for enhancing (g-C3N4)-based photocatalytic performance.  相似文献   
52.
Chloroquine (CQ) is an antimalarial drug known to inhibit autophagy flux by impairing autophagosome–lysosome fusion. We hypothesized that autophagy flux altered by CQ has a considerable influence on the lipid composition of endothelial cells. Thus, we investigated endothelial responses induced by CQ on human microvascular endothelial cells (HMEC-1). HMEC-1 cells after CQ exposure were measured using a combined methodology based on label-free Raman and fluorescence imaging. Raman spectroscopy was applied to characterize subtle chemical changes in lipid contents and their distribution in the cells, while the fluorescence staining (LipidTox, LysoTracker and LC3) was used as a reference method. The results showed that CQ was not toxic to endothelial cells and did not result in the endothelial inflammation at concentrations of 1–30 µM. Notwithstanding, it yielded an increased intensity of LipidTox, LysoTracker, and LC3 staining, suggesting changes in the content of neutral lipids, lysosomotropism, and autophagy inhibition, respectively. The CQ-induced endothelial response was associated with lipid accumulation and was characterized by Raman spectroscopy. CQ-induced autophagosome accumulation in the endothelium is featured by a pronounced alteration in the lipid profile, but not in the endothelial inflammation. Raman-based assessment of CQ-induced biochemical changes offers a better understanding of the autophagy mechanism in the endothelial cells.  相似文献   
53.
In this work, gallium doped copper sulfide (Ga-doped CuS) nanocrystals were prepared using a solvothermal method. The effects of Ga doping on the crystal structures, chemical composition, morphology, optical properties and thermal performance of copper sulfide (CuS) were investigated. The Ga-doped CuS nanocrystals had a hexagonal structure comparable to that of pure CuS. The Cu+/Cu2+ ratio first decreased and then increased with increasing Ga3+ doping. Both CuS and Ga-doped CuS exhibited nanoplate and nanorod morphologies. The visible transmittance of the Ga-doped CuS films was in the range of 61–77.1%. Importantly, the near-infrared (NIR) shielding performance of the films can be tuned by adjusting the concentration of the Ga dopant. The NIR shielding value of the optimal Ga-doped CuS film was 72.4%, which was approximately 1.5 times as high as that of the pure CuS film. This can be ascribed to the enhanced plasmonic NIR absorption that resulted from an increase in the hole concentration after doping with Ga3+ ions. In the thermal performance test, the Ga-doped CuS film lowered the interior temperature of the heat box by 9.1 °C. Therefore, the integration of good visible transmittance and high NIR shielding performance make the Ga-doped CuS nanocrystals a promising candidate for energy-efficient window coatings.  相似文献   
54.
55.
To investigate the effect of cooking temperature (55, 65, 75, 85 and 95 °C) on texture and flavour binding of braised sauce porcine skin (BSPS), sensory acceptance, microstructure and flavour-binding capacity were investigated during the processing of BSPS. Samples cooked at 85 and 95 °C showed better texture and aroma scores. Hardness and chewiness of BSPS were obviously improved at 85 and 95 °C than control group. Collagen structure was significantly destroyed over 85 °C. The porcine skin collagen heated at 85 and 95 °C showed relatively higher flavour-binding capacity than other samples. The improvement of texture of BSPS was mainly attributed to the degradation of collagen. Higher aroma scores of BSPS were related to intense binding abilities with aroma compounds at 85 and 95 °C. Cooking at 85 or 95 °C could be an optimal cooking temperature for BSPS.  相似文献   
56.
Optical interferometry is a powerful tool for measuring and characterizing areal surface topography in precision manufacturing. A variety of instruments based on optical interferometry have been developed to meet the measurement needs in various applications, but the existing techniques are simply not enough to meet the ever-increasing requirements in terms of accuracy, speed, robustness, and dynamic range, especially in on-line or on-machine conditions. This paper provides an in-depth perspective of surface topography reconstruction for optical interferometric measurements. Principles, configurations, and applications of typical optical interferometers with different capabilities and limitations are presented. Theoretical background and recent advances of fringe analysis algorithms, including coherence peak sensing and phase-shifting algorithm, are summarized. The new developments in measurement accuracy and repeatability, noise resistance, self-calibration ability, and computational efficiency are discussed. This paper also presents the new challenges that optical interferometry techniques are facing in surface topography measurement. To address these challenges, advanced techniques in image stitching, on-machine measurement, intelligent sampling, parallel computing, and deep learning are explored to improve the functional performance of optical interferometry in future manufacturing metrology.  相似文献   
57.
58.
59.
In this article, isocyanate was adopted to modify Y2O3 powder for the purpose of preparing transparent Y2O3 ceramics via gel casting. The modification could enhance the hydration resistance of Y2O3 powder through the steric hindrance effect. The coating mechanism can be proved by the infrared spectrum of the surface-modified Y2O3 powder. Modification could not only prevent Y2O3 particles from reacting with water, but also prevents agglomeration between particles. The viscosity of the slurry with a solid content of 52.7 vol% is only 0.48 Pa·s at the shear rate of 100 s−1, which is suitable for preparing high-density compacts by gel casting. The transmittance of the sample (1840°C × 8 h, 1 mm thickness) at 1100 nm reaches 75%. The microstructure of the sintered body is dense with the average grain size of 6.5 μm without obvious impurities nor pores. Five mol% ZrO2-doped Y2O3 transparent ceramic fairing with the diameter of 5 cm without defects was successfully fabricated by gel casting (52.7 vol% solid volume) and vacuum sintering (1840°C × 8 h).  相似文献   
60.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号